Neurophysiology and neuroanatomy of pitch perception: auditory cortex.
نویسندگان
چکیده
We present original results and review literature from the past fifty years that address the role of primate auditory cortex in the following perceptual capacities: (1) the ability to perceive small differences between the pitches of two successive tones; (2) the ability to perceive the sign (i.e., direction) of the pitch difference [higher (+) vs. lower (-)]; and (3) the ability to abstract pitch constancy across changes in stimulus acoustics. Cortical mechanisms mediating pitch perception are discussed with respect to (1) gross and microanatomical distribution; and (2) candidate neural coding schemes. Observations by us and others suggest that (1) frequency-selective neurons in primary auditory cortex (A1) and surrounding fields play a critical role in fine-grained pitch discrimination at the perceptual level; (2) cortical mechanisms that detect pitch differences are neuroanatomically dissociable from those mediating pitch direction discrimination; (3) cortical mechanisms mediating perception of the "missing fundamental frequency (F0)" are neuroanatomically dissociable from those mediating pitch perception when F0 is present; (4) frequency-selective neurons in both right and left A1 contribute to pitch change detection and pitch direction discrimination; (5) frequency-selective neurons in right A1 are necessary for normal pitch direction discrimination; (6) simple codes for pitch that are based on single- and multiunit firing rates of frequency-selective neurons face both a "hyperacuity problem" and a "pitch constancy problem"-that is, frequency discrimination thresholds for pitch change direction and pitch direction discrimination are much smaller than neural tuning curves predict, and firing rate patterns change dramatically under conditions in which pitch percepts remain invariant; (7) cochleotopic organization of frequency-selective neurons bears little if any relevance to perceptual acuity and pitch constancy; and (8) simple temporal codes for pitch capable of accounting for pitches higher than a few hundred hertz have not been found in the auditory cortex. The cortical code for pitch is therefore not likely to be a function of simple rate profiles or synchronous temporal patterns. Studies motivated by interest in the neurophysiology and neuroanatomy of music perception have helped correct longstanding misconceptions about the functional role of auditory cortex in frequency discrimination and pitch perception. Advancing knowledge about the neural coding of pitch is of fundamental importance to the future design of neurobionic therapies for hearing loss.
منابع مشابه
Does a pitch center exist in auditory cortex?
Pitch perception is an important component of hearing, allowing us to appreciate melodies and harmonies as well as recognize prosodic cues in speech. Multiple studies over the last decade have suggested that pitch is represented by a pitch-processing center in auditory cortex. However, recent data (Barker D, Plack CJ, Hall DA. Cereb Cortex. In press; Hall DA, Plack CJ. Cereb Cortex 19: 576-585,...
متن کاملFunctional role of auditory cortex in frequency processing and pitch perception.
Microelectrode studies in nonhuman primates and other mammals have demonstrated that many neurons in auditory cortex are excited by pure tone stimulation only when the tone's frequency lies within a narrow range of the audible spectrum. However, the effects of auditory cortex lesions in animals and humans have been interpreted as evidence against the notion that neuronal frequency selectivity i...
متن کاملNeural coding of periodicity in marmoset auditory cortex.
Pitch, our perception of how high or low a sound is on a musical scale, crucially depends on a sound's periodicity. If an acoustic signal is temporally jittered so that it becomes aperiodic, the pitch will no longer be perceivable even though other acoustical features that normally covary with pitch are unchanged. Previous electrophysiological studies investigating pitch have typically used onl...
متن کاملDuifhuis pitch: neuromagnetic representation and auditory modeling.
When a high harmonic is removed from a cosine-phase harmonic complex, we hear a sine tone pop out of the perception; the sine tone has the pitch of the high harmonic, while the tone complex has the pitch of its fundamental frequency, f0. This phenomenon is commonly referred to as Duifhuis Pitch (DP). This paper describes, for the first time, the cortical representation of DP observed with magne...
متن کاملBitemporal lesions dissociate auditory evoked potentials and perception.
We studied auditory evoked potentials (AEPs) in an 82-year-old female patient who became suddenly deaf following the second of two strokes. The patient showed markedly elevated pure tone thresholds, was unable to discriminate sounds and could not understand speech. Brain-stem auditory evoked potentials (BAEPs) were normal. CT scans revealed bilateral lesions of the superior temporal plane which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1060 شماره
صفحات -
تاریخ انتشار 2005